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\Z Fig. 3.4. Count the number of shortest zigzag paths.

that connect it with 4. In Fig. 3.4 a few numbers so obtained are marked
(but you should have obtained these numbers and a few more by yourself—
check them at least). Observe these numbers—do you notice something ?

If you have enough previous knowledge you may notice many things.
Yet even if you have never before seen this array of numbers displayed
by Fig. 3.4 you may notice an interesting relation: any number in Fig. 3.4
that is different from 1 is the sum of two other numbers in the array, of its
northwest and northeast neighbors. For instance,

=143, 6=34+3

You may discover this law by observation as a naturalist discovers the
laws of his science by observation. Yet, after having discovered it, you
should ask yourself: Why is that so? What is the reason?

The reason is simple enough. Consider three corners in your network,
the points X, Y, and Z, the relative position of which is shown by Fig. 3.4:
X is the northwest neighbor and Y the northeast neighbor of Z. If we
wish to reach Z coming from A along a shortest path in the network, we
must pass either through X or through Y. Once we have reached X,
we can proceed hence to Z in just one way, and the same is true for pro-
ceeding from Yto Z. Therefore, the total number of shortest paths from A
to Z is a sum of two terms: it equals the number of shortest paths from A to
X added to the number of those from A to Y. This explains fully our
observation and proves the general law.

Having clarified this basic point, we can extend the array of numbers in
Fig. 3.4 by simple additions till we obtain the larger array in Fig. 3.5, the
south corner of which yields the desired answer: we can read the magic
word in Fig. 3.2 in exactly 252 different ways.

3.6. The Pascal triangle

By now the reader has probably recognized the numbers and their
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peculiar configuration which we have examined in the foregoing section.
The numbers in Fig, 3.4 are binomial coefficients and their triangular
arrangement is usually called the Pascal triangle. (Pascal himself called
it the “arithmetical triangle.””) Further lines can be added to the triangle
of Fig. 3.4 and, in fact, it can be extended indefinitely. The array in
Fig. 3.5 is a square piece cut out of a larger triangle.

Some of the binomial coefficients and their triangular arrangement can
be found in the writings of other authors before Pascal’s Traité du triangle
arithmétique. Still, the merits of Pascal in this matter are quite sufficient
to justify the use of his name.

(1) We have to introduce a suitable notation for the numbers contained
in the Pascal triangle; this is a step of major importance. For us each
number attached to a point of this triangle has a geometric meaning: it
indicates the number of different shortest zigzag paths from the apex of
the triangle to that point. Each of these paths passes along the same
number of blocks, let us say n blocks. Moreover, all these paths agree in
the number of blocks described in the southwesterly direction and in the
number of those in the southeasterly direction. Let /and r stand for these
numbers, respectively (/ to the left and r to the right—of course, downward
in both cases). Obviously

n=1+r

If we give any two of the three numbers n, /, and r, the third is fully deter-
mined and so is the point to which they refer. (In fact, / and r are the
rectangular coordinates of the point with respect to a system the origin of
which is the apex of the Pascal triangle; one of the axes points southwest,

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
6 15 20 15 6
21 35 35 21
56 70 56
126 126

Fig. 3.5. A square from a triangle. 252
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the other southeast.) For instance, for the last A of the path shown in
Fig. 3.3

=35, r=235, n=10
and for the second B of the same path

= §5, r=3, n=3_8

We shall denote by (:) (this notation is due to Euler) the number of

shortest zigzag paths from the apex of the Pascal triangle to the point
specified by n (total number of blocks) and r (blocks to the right down-
ward). For instance, see Fig. 3.5,

(g) = 56, (150) =25

The symbols for the numbers contained in Fig. 3.4 are assembled in
Fig. 3.6. The symbols with the same number upstairs (the same n) are
horizontally aligned (along the nth ““base”—the base of a right triangle).
The symbols with the same number downstairs (the same r) are obliquely
aligned (along the rth ““avenue’’). The fifth avenue forms one of the sides
of the square in Fig. 3.5—the opposite side is formed by the Oth avenue
(but you may call it the borderline, or Riverside Drive, if you prefer to do
s0). The fourth base is emphasized in Fig. 3.4.

(2) Besides the geometric aspect, the Pascal triangle also has a compu-
tational aspect. All the numbers along the boundary (Oth street, Oth
avenue, and their common starting point) are equal to 1 (it is obvious that

(o)
@ O
@ & @
@ @ & 06
d @O 6 6 O

(2 ()

+1
(n r ) Fig. 3.6. Symbolic Pascal triangle.
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there is just one shortest path to these street corners from the starting

point). Therefore,
n n
(o= () -1

It is appropriate to call this relation the boundary condition of the Pascal
triangle,

Any number inside the Pascal triangle is situated along a certain hori-
zontal row, or base. We compute a number of the (n + 1)th base by
going back, or recurring, to two neighboring numbers of the nth base:

(" 7)=0)+ (20

r r r—1

see Fig. 3.6. It is appropriate to call this equation the recursion formula of
the Pascal triangle.

From the computer’s standpoint the numbers (';) are determined (or

defined, if you wish) by the recursion formula and the boundary condition
of the Pascal triangle.

3.7. Mathematical induction

When we compute a number in the Pascal triangle by using the recursion
formula, we have to rely on the previous knowledge of two numbers of
the foregoing base. It would be desirable to have a scheme of computa-
tion independent of such previous knowledge. There is a well-known
formula, which we shall call the explicit formula for binomial coefficients,
that yields such an independent computation:

m _ nn—NDn-2)--(n—r+1)
(r)_l-Z -3 . r

Pascal’s treatise contains the explicit formula (stated in words, not in our
modern notation). Pascal does not say how he has discovered it and we
shall not speculate too much how he might have discovered it. (Perhaps
he just guessed it first—we often find such things by observation and
tentative generalization of the observed; see the remark in the solution
of ex. 3.39.) Yet Pascal gives a remarkable proof for the explicit formula
and we wish to devote our full attention to his method of proof.?

We need a preliminary remark. The explicit formula does not apply,

4 Cf. Pascal’s (Euvres l.c. footnote 3, pp. 455-464, especially pp. 456-457. The
following presentation takes advantage of modern notation and modifies less essen-
tial details.
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as it stands, to the case » = 0. Yet we lay down the rule that, if r = 0,
it should be interpreted as
(6) =1
o) =

The explicit formula does apply to the case r = n and yields
(n)_n(n—l)--- 2. 1_1
n 1-2 «.-(n—1n
which is the correct result. Therefore, we have to prove the explicit
formula only for 0 < r < n, that is, in the interior of the Pascal triangle
where we can use the recursion formula. Now, we quote Pascal, with
unessential modifications some of which will be included in square
brackets [ ].

Although this proposition [the explicit formula] contains infinitely many
cases I shall give for it a very short proof, supposing two lemmas.

The first lemma asserts that the proposition holds for the first base, which
is obvious. [The explicit formula is valid for n = 1, because, in this case,
all possible values of r, r = 0 and r = 1, fall under the preliminary remark.]

The second lemma asserts this: if the proposition happens to be valid
for any base [for any value n] it is necessarily valid for the next base [for
n+ 1]

We see hence that the proposition holds necessarily for all values of .
For it is valid for n = 1 by virtue of the first lemma; therefore, for n = 2
by virtue of the second lemma; therefore, for n = 3 by virtue of the same,
and so on ad infinitum.

And so nothing remains but to prove the second lemma.

In accordance with the statement of the second lemma, we assume that
the explicit formula is valid for the nth base, that is, for a certain value of n
and all compatible values of r (for r =0, 1, 2,..., n). In particular,
along with

m\ _ nn—=1)--(n—r+2)n—r+1)
(r)_1-2 RN r
we also have (if r 2 1)

n _nn—=1)-(n—r+2)
(r—l)_l 2 - (r=1

Adding these two equations and using the recursion formula, we derive

as a necessary consequence

n+1 n n nn—1)---n—r+2)[n—-r+1

( r )=(r)+(r—1)=1(-2 . (r—l))[ r “]
nn—1)---m—r+2)n+1

1-2 .. (r—=1) r
_(m+Dan—-1)---(n—-r+2)

- 1-2.3 . e r
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That is, the validity of the explicit formula for a certain value of n involves
its validity for n + 1. This is precisely what the second lemma asserts—
we have proved it.

The words of Pascal which we have quoted are of historic importance
because his proof is the first example of a fundamental pattern of reasoning
which is usually called mathematical induction.

This pattern of reasoning deserves further study.® 1If carelessly intro-
duced, reasoning by mathematical induction may puzzle the beginner; in
fact, it may appear as a devilish trick.

You know, of course, that the devil is dangerous: if you give him the
little finger, he takes the whole hand. Yet Pascal’s second lemma does
exactly this: by admitting the first lemma you give just one finger, the case
n=1. Yet then the second lemma also takes your second finger (the
case n = 2), then the third finger (n = 3), then the fourth, and so on, and
finally takes all your fingers even if you happen to have infinitely many.

3.8. Discoveries ahead

After the work in the three foregoing sections, we now have three
different approaches to the numbers in the Pascal triangle, the binomial
coefficients.

(1) Geometrical approach. A binomial coefficient is the number of the
different shortest zigzag paths between two given corners in a network of
streets.

(2) Computational approach. The binomial coefficients can be defined
by their recursion formula and their boundary condition.

(3) Explicit formula. We have proved it, by Pascal’s method, in sect.
3.7.
The name of the numbers considered reminds us of another approach.

(4) Binomial theorem. For indeterminate (or variable) x and any non-
negative integer n we have the identity

a+ar=(g)+ e+ G+ ()

For a proof, see ex. 3.1.

There are still other approaches to the numbers in the Pascal triangle
which play, in fact, a role in a great many interesting questions and possess
a great many interesting properties. “‘This table of numbers has eminent

5 HSI, Induction and mathematical induction, pp. 114-121; MPR, vol. 1, pp. 108-
120.
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3.32. Consider the sum of the numbers along a base of the Pascal triangle:

1 =1
1+1 =2
1+2+1 =4
1+3+3+1 =8

These facts seem to suggest a general theorem. Can you guess it? Having
guessed it, can you prove it? Having proved it, can you devise another
proof?

3.33. Observe

1-1
I —2+1
1-3+3-1
1-4+6-4+1

generalize, prove, and prove again.

In
oo oo

3.34. Consider the sum of the first six numbers along the third avenue of the
Pascal triangle:

1+4+10+ 20+ 35 + 56 =126

Locate this sum in the Pascal triangle, try to observe analogous facts, general-
ize, prove, and prove again,

3.35. Add the thirty-six numbers displayed in Fig. 3.5, try to locate their
sum in the Pascal triangle, formulate a general theorem, and prove it. (Add-
ing so many numbers is a boring task—in doing it cleverly, you may easily
catch the essential idea.)

3.36. Try to recognize and locate in the Pascal triangle the numbers involved
in the following relation:

1.1 +5-4 +10.6 + 104 + 5-1 = 126
Observe (or remember) analogous cases, generalize, prove, prove again.

3.37. Try to recognize and locate in the Pascal triangle the numbers involved
in the following relation:

61 + 53 +4.6+3.10 +2-15+1-21 =126
Observe (or remember) analogous cases, generalize, prove, prove again.

3.38. Fig. 3.8 shows the first four from an infinite sequence of figures each
of which is an assemblage of equal circles into an equilateral triangular shape.
Any circle that is not on the rim of the assemblage touches six surrounding
circles. In the nth figure there are n circles aligned along each side of the
triangular assemblage and the total number of circles in this nth figure is
termed the nth rriangular number. Express the nth triangular number in
terms of n and locate it in the Pascal triangle,

3.39. Replace in Fig. 3.8 each circle by a sphere (a marble) of which the
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Fig. 3.8. The first four triangular numbers.

circle forms the equator. Fix 10 marbles arranged as in Fig. 3.8 on a horizon-
tal plane, place 6 marbles on top (they fit neatly into the interstices) as a second
layer, add 3 marbles on top of these as a third layer and place finally 1 marble
on the very top. This configuration of

1+3+6+10=20

marbles is so related to a regular tetrahedron as each of the assemblages of
circles shown by Fig. 3.8 is related to a certain equilateral triangle: 20 is the
fourth pyramidal number. Express the nth pyramidal number in terms of »
and locate it in the Pascal triangle.

3.40. You can build a pyramidal pile of marbles in another manner: begin
with a layer of n% marbles, arranged in a square as in Fig. 3.9, place on top of
it a second layer of (n — 1)? marbles, then (n — 2)? marbles, and so on, and
finally just one marble on the very top. How many marbles does the pile
contain?

3.41. Interpret the product

mjy [nz\ {Na . Nn
rnj\rz/\rs Tn
as the number of a certain set of zigzag paths in a network of streets.

3.42, All the shortest zigzag paths from the apex of the Pascal triangle to the
point specified by »n (the total number of blocks) and r (blocks to the right
downward) have a point in common with the line of symmetry of the Pascal
triangle (from the first A to the last 4 in Fig, 3,3) namely their common initial

Fig. 3.9. The fourth square number.
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point, the apex. In this set of paths, consider the subset of such paths as have
no further point in common with the line of symmetry and find their number N,
In order to realize the meaning of our problem, consider easy particular
cases: for
r=0, n n/2(neven)
N=1 1 0

Solution. It will suffice to consider the case r > n/2; that is, the common
lower endpoint of our zigzag paths lies in the right-hand half of the plane
bisected by the line of symmetry, There are (:’) paths in the full set which we
divide into three nonoverlapping subsets.

(1) The subset defined above of which we have to find the number of
members, N, A path of the set that does nor belong to this subset has, besides
A, another point on the line of symmetry,

(2) Paths beginning with a block to the left downward; such a path must
cross the line of symmetry somewhere since its endpoint lies in the other half

plane. The number of paths in this subset is obviously (” : 1).

(3) Such paths as belong neither to (1) nor to (2); they begin with a block to
the right downward but subsequently attain somewhere the line of symmetry.
Show that there are just as many paths in subset (2) as in subset (3) (Fig. 3.10
hints the decisive idea of a one-one correspondence between these subsets) and

(ol Fig. 3.10. The decisive idea.



RECURSION 87

Fig. 3.11. A modification of the decisive idea.

derive hence that

)

n r

3.43. (Continued) The number of all shortest zigzag paths from the apex to
the nth base, that have only the initial point in common with the line of sym-

metry, is (2:) if n = 2m is even and 2 (2:) if n=2m + 1 is odd.

3.44. Trinomial coefficients. Fig. 3.12 shows a fragment of an infinite
triangular array of numbers defined by two conditions.

(1) Boundary condition. Each horizontal line or “base” (this term has been
similarly used in sect. 3.6) begins with 0, 1 and ends with 1, 0, (The nth base
consists of 2n + 3 numbers and so the boundary condition leaves undefined
2n ~ 1 numbers of the nth base, forn =1, 2,3,....)

S 0 1 4 10 16 1916 10 4 1 O
Fig. 3.12, Trinomial

coefficients. 0 1 5 15 30 45 51 45 30 15 56 1 O
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(2) Recursion formula. Any number of the (n + 1)th base left undefined
by (1) is computed as the sum of three numbers of the nth base: of its north-
western, northern, and northeastern neighbors. (For instance, 45 = 10 +
16 + 19.)

Compute the numbers of the szventh base. (They are, with three exceptions,
divisible by 7.)

3.45. (Continued) Show that the numbers of the nth base, beginning and
ending with 1, are the coefficients in the expansion of (1 + x + x?" in powers
of x, (Hence the name “‘trinomial coefficient.’”)

3.46. (Continued) Explain the symmetry of Fig, 3.12 with respect to its
middle vertical line.

3.47. (Continued) Observe that

1+1+1 ' =3
14+24+34+2+1 =9
14+3+6+7+6+3+1 =27

generalize and prove,
3.48. (Continued) Observe that

1-14+1 =1
1-24+3-2+1 =1
1-34+6-7+6-3+1 =1

generalize and prove.
3.49. (Continued) Observe that the value of the sum
12 +2%2 +32+22+12=19
is a trinomial coefficient, generalize, and prove.

3.50. (Continued) Find lines in Fig. 3.12 agreeing with lines in the Pascal
triangle,

3.51. Leibnitz’s Harmonic Triangle. Fig. 3.13 shows a section of this little
known but remarkable arrangement of numbers, It has properties which are
so to say ‘“‘analogous by contrast” to those of the Pascal triangle. That
triangle contains integers, this one (as far as visible) the reciprocals of integers,
In Pascal’s triangle, each number is the sum of its northwestern and north-
eastern neighbors. In Leibnitz’s triangle, each number is the sum of its
southwestern and southeastern neighbors; for instance

1 1 1 1 1 1 11 1

373%8 373t sTTTDR
This is the recursion formula of the Leibnitz triangle, This triangle has also a
boundary condition: the numbers along the northwest borderline (the ““Oth
avenue”) are the reciprocals of the successive integers, 1/1, 1/2, 1/3,....
(The boundary condition of the Pascal triangle is of a different nature:
values are prescribed along the whole boundary, Oth avenue and Oth street.)



